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Quantum n-Vector Anharmonic Crystal II:
Displacement Fluctuations
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Based on the 1�n-expansion derived in a previous paper, the displacement fluc-
tuations are analyzed in a quantum n-vector model of anharmonic crystal in the
large n regime. It is shown that in the ferroelectric phase the n � � limit of
the local fluctuation field has faster large-distance correlation decay than its
Hartree�Fock approximation. Also, the critical exponent of the global displace-
ment fluctuation is strictly smaller there than the Hartree�Fock exponent. In
particular, the displacement fluctuations may be normal in the ferroelectric
phase in spite of the Hartree�Fock prediction.

KEY WORDS: Quantum anharmonic crystal; large n-limit; large-distance
correlations; fluctuations.

1. INTRODUCTION

In a previous paper(1) we considered a model of quantum anharmonic crys-
tal with n-dimensional displacement operators for each oscillator (proposed
in ref. 2), and we proved, under the assumption of isotropy of the (quartic
anharmonic) one-body-, and (harmonic) two-body-, potentials, that the
free energy and the equilibrium state ( } ) N, n of the model on a finite lat-
tice, e.g., 4N/Zd with |4N |=N d sites, allow, for large number n of com-
ponents, complete asymptotic expansions in powers of 1�n. The leading
term of those expansions coincide with the Hartree�Fock result, i.e., the
n=� limit state ( } ) HF

N is an infinite product of identical states of a scalar
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harmonic oscillator model with a self-consistently defined Hamiltonian.
However, for physically interesting quantities, such as fluctuations or
susceptibilities, which involve all components, the n=� result is different,
in general, from the Hartree�Fock one, because the higher order terms of
the 1�n-expansion may sum up to nontrivial contributions in the limit. In
the present work we point out that these higher order corrections imply,
already in leading order in n, qualitative changes in the distribution of such
observables in the equilibrium states of the infinite crystal, as compared to
the Hartree�Fock prediction.

More precisely, our framework is the theory of quantum fluctuations,
or quantum central limit theorem, as developed in ref. 3 applied to our
situation, where the number of degrees of freedom goes to infinity already
on account of n � �. For any one-component observable, i.e., self-adjoint
operator A acting in L2(R4N), its fluctuation in the equilibrium state
( } ) N, n of the n-component model on 4N is defined as:

F (N, n)(A)=n&1�2 :
n

:=1

(A:&(A:) N, n) (1.1)

where A:=1� } } } �A:� } } } �1 is the copy of A acting on the : compo-
nent in }n

:=1 L2(R
4N). As n � �, the restriction of the equilibrium state

( } ) N, n to the fluctuation operators F (N, n)(A) converges (in the sense of
convergence of characteristic functions) to a quasifree state |N of a CCR
(canonical commutation relation) algebra, FN , named the algebra of
fluctuations. We denote this kind of convergence

lim
n � �

F (N, n)(A)=F (N )(A) # FN (1.2)

Likewise, one can define the Hartree�Fock counterpart of this construction
by replacing everywhere the exact state ( } ) N, n with the limit product state
( } ) HF

N , i.e., consider the limits of the characteristic functions with respect
to ( } ) HF

N of the operators:

F� (N, n)(A)=n&1�2 :
n

:=1

(A:&(A:) HF
N ) (1.1$)

In this way, one constructs a different quasifree state |~ N on a CCR algebra
F� N of Hartree�Fock fluctuations. The corresponding limit is denoted

lim
n � �

F� (N, n)(A)=F� (N )(A) # F� N (1.2$)

In ref. 1 we considered the 1�n-expansion for the fluctuations (1.1),
(1.1$) in the cases A=qx (displacement), and A=q2

x , (squared-displacement)
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(x # 4N), and in particular calculated the explicit form of the leading term,
i.e., showed that the limits F (N )(qx) and F (N )(q2

x) (respectively, F� (N )(qx)
and F� (N )(q2

x)) (x # 4N) are distributed in |N (respectively, in |~ N) as
Gaussian vectors with covariance matrices C (N )

x, y and D (N )
x, y (respectively,

C� (N )
x, y and D� (N )

x, y). The formulae of ref. 1 will be reproduced in the new
context (e.g., assuming translation invariance) in Section 2.

Here, we propose to show on an example that the thermodynamic
limits | and |~ of the states |N and |~ N on the corresponding fluctuation
algebras are qualitatively different in the many phase region. Namely, we
define the (exact and Hartree�Fock) local displacement fluctuation fields in
the thermodynamic limit as the limits F(qx) and F� (qx) (x # Zd ) in finite
volume distributions of the Gaussian vectors F (N )(qx) and F� (N )(qx), respec-
tively. The main result to be proved in Section 3 is essentially contained in
the following

Theorem. In a pure phase in the many phase region, i.e., whenever

lim
hz0

lim
N, n � �

(q:
x) N, n=: M>0 (1.3)

F(qx) and F� (qx) (x # Zd ) are singular Gaussian fields with covariance
operators

Cx, y :=|(F(qx) F(qy)) and C� x, y :=|~ (F� (qx) F� (qy)) (1.4)

related at large distances by the relation

Cx, yt
;

2M2 (C� x, y)2, |x& y| � � (1.5)

Remarks. 1. The large distance behaviour of C� x, y is well studied
(it is in fact the correlation function of a harmonic crystal) and known to
obey the power law |x& y|&d&2. While the latter clustering is non-sum-
mable in all dimensions d, Eq. (1.5) implies summable clustering of the
``exact'' local fluctuation field F(qx) (in particular, normal global displace-
ment fluctuations) for d>4.

2. An interpretation of the result above may be done in terms of
longitudinal and transverse projections of the displacements. The displace-
ment vector at a point x, q� x=(q:

x):=1,..., n # Rn has, in view of the permuta-
tion symmetry, the expectation (q� x) N, n along the unit vector

e� =
1

- n
(1,..., 1) # Rn (1.6)
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We fix one among the equivalent orthogonal directions, e� = (e� 2
==1,

e� = } e� =0), say

e� ==
- n

- n&1
e� 1&

1

- n&1
e� (1.6$)

Then, F (N, n)(qx)=(e� , q� x&(q� x) N, n), i.e., F(qx) is in fact the field of devia-
tions from its expectation of the projection of q� x along its expectation. On
the other hand, it can be easily seen that F� (N, n)(qx) is distributed in the
product state ( } ) HF

N like q1
x&(q1

x) HF
N , therefore it has for n � � the same

distribution as (e� = , q� x), e.g., with the choice (1.6$)

q1
x&(q1

x) HF
N &(e� = , q� x)

=
- n

- n&1 \
1

- n
F (N, n)(qx)+(q1

x) N, n&(q1
x) HF

N +
+\1&

- n

- n&1+ (q1
x&(q1

x) HF
N )

converges in distribution to 0 as a consequence of the convergence of
F (N, n)(qx).

3. The same asymptotics, as well as the relation (1.5) between
longitudinal and transverse correlations, are predicted to hold in the classi-
cal counterpart (or infinite mass limit) of the model already for finite n on
basis of the hydrodynamic approximation in spin-wave theory.(4) The proof
of the large n result analogous to the one in the theorem for the classical
n-vector spin model has been done in ref 5. The reason for the validity, in
our quantum model, at any non-zero temperature, of the classical large dis-
tance asymptotics of the displacement correlations is made clear during the
proof in Section 3.

4. A study of the fluctuations in the quantum model should include
all observables, not just displacements. The techniques developed in ref. 1
are mainly suited for the latter, while the momenta require further con-
sideration. Nontrivial quantum effects are known to be present for momen-
tum fluctuations at a particular point of the phase diagram in another
model of anharmonic crystal with the same Hartree�Fock approximation
as the one we consider here.(6) A few remarks on the quantum character of
the fluctuation algebra will be done in Section 5.
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In Section 4 we consider the global displacement fluctuation F$(q)
obtained from the local ones by summing over translations, as well, i.e., the
limit in distribution as N � � of

F (N )
$ (q)=|4N |&(1+$)�2 :

x # 4N

F (N )(qx) (1.7)

(with $ chosen such as to get a nontrivial distribution of F$(q)) and com-
pare it with the Hartree�Fock approximation F� (N )

$� (q). The values of the
critical exponents $, $� are both quite sensitive to the way of approaching
an extremal state in the ferroelectric region, but typically $<$� . In par-
ticular, for lattice dimension larger than 4, it is possible to have $=0 (i.e.,
the ``exact'' fluctuations are normal ), while the Hartree�Fock fluctuations
(in extremal states) are always abnormally large in the multiphase region
including the critical line. The fact that the Hartree�Fock approximation is
more singular than the n-vector model is in correspondence with the standard
wisdom that mean field approximations enhance phase transitions.

2. THE LOCAL DISPLACEMENT FLUCTUATION FIELD OF THE
INFINITE CRYSTAL

In this section we give a short presentation of the model and a few
results of ref. 1 in the translation invariant situation considered here, and
perform the thermodynamic limit. In particular we describe the phase
diagram and the construction of the local displacement fluctuation field.

2.1. The Model

The equilibrium positions of the oscillators are the sites of the cubic
lattice Zd. The displacement of each oscillator from its equilibrium position
x # Zd is a n-dimensional position operator q� x=(q:

x):=1,..., n # Rn and the
associated momenta are p:

x=&i���q:
x . We denote 4N the cube [x # Zd;

0�xl<N, l=1,..., d ] wrapped on a torus (periodic boundary conditions).
The model Hamiltonian (where we restrict for definiteness to nearest
neighbour harmonic interactions) is given by

HN, n= :
n

:=1
{ :

x # 4N

[( p:
x)2�2m&hq:

x+(a�2)(q:
x)2+(b�2)(q� 2

x�n)2]

+ 1
2 :

x, y # 4
|x& y|=1

(q:
x&q:

y)2= (2.1)
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The coupling-between different components comes only from the quartic
term

(b�2n)(q� 2
x)2=(b�2) \(n&1�2) :

n

:=1

(q:
x)2+

2

which for b>0 ensures the confinement. The quadratic one-site term
(a�2) q� 2

x may induce a ferroelectric phase transition if a<0. The external
field h9 x=(h):=1,..., n , violating the isotropy, is chosen along the main
diagonal of Rn, with the effect that the model has still full permutation
invariance with respect to components :.

Let us denote by

fN, n=
&1

n; |4N |
ln ZN, n ; ZN, n=tr exp(&;HN, n) (2.2)

its free-energy per component,and per lattice site, and by

( } ) N, n=Z&1
N, n tr( } exp(&;HN, n)) (2.3)

its finite-volume equilibrium state. In ref. 1 we derived, for every fixed N,
the complete asymptotic series in powers of 1�n of fN, n and of (O) N, n for
any observable O depending on a finite number of components :. The leading
term of these expansions are given by the Hartree�Fock approximation to
the model (2.1), to be described below.

The Hartree�Fock approximation to Hamiltonian (2.1) is a self-con-
sistent one, describing independent copies of scalar coupled harmonic
oscillators, each system corresponding to one component and having the
Hamiltonian

H� N(c)= :
x # 4

[ p2
x �2m&hqx+(a+2bcx) q2

x�2&bc2
x �2]

+ :
x, y # 4

|x& y|=1

(qx&qy)2�2 (2.4)

where the numbers cx , x # 4N are determined as solution of the self-con-
sistency equation system: for all x # 4N ,

cx=(q2
x) t

c, N (2.5)

where we denoted ( } ) t

c, N the equilibrium state at inverse temperature ; of
the Hamiltonian H� N(c).
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Translation invariance, combined with the uniqueness of the solution
of the system (2.5), provides the major simplification that cx=c for all
x # 4N , where c is the solution of a single equation. For what follows, it is
convenient to introduce the variable,

z=a+2bc�0 (2.6)

and bring all translation invariant operators to diagonal form using the
Fourier basis in C4N :

(ek)x=|4N | &1�2 exp(&ikx) (2.7)

where

k # 4*N={k : kl=
2?nl

N
, n l=0, \1, \2,..., \(N�2&1), N�2, l=1,..., d=

In particular, the matrix Xz of the quadratic form defining the potential
function in Eq. (2.4):

(Xz)x, y=(z+4d ) $x, y&2$ |x& y| , 1 (2.8)

has the eigenvectors ek with corresponding eigenvalues

z+|(k), where |(k)=4 :
d

i=1

sin2 k i

2
(2.9)

Equation (2.5) writes as

z&a
2b

=\h
z+

2

+
1

; |4N |
:

j # Z

:
k # 4*N

[z+|(k)+(2? - m j�;)2]&1 (2.5$)

and has a unique solution zN(;, m, h)>0. This, in turn, allows, by going
to normal modes in Eq. (2.4), to obtain the simple, well-known expressions
for the free-energy f� N(z) and equilibrium expectations ( } ) t

z, N associated
with the harmonic Hamiltonian (2.4) for any z>0.

With this notation, the Hartree�Fock free-energy and state are defined
by

f HF
N = f� N(zN(;, m, h)) and ( } ) HF

N = `
�

:=1

( } ) t

zN (;, m, h), N (2.10)
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The results of ref. 1 imply, for all values of the parameters and for
any observable O depending on a finite number of components, the
convergence

lim
n � �

fN, n= f HF
N ; lim

n � �
(O) N, n=(O) HF

N (2.11)

and also that the fluctuations [F (N, n)(qx); x # 4N] and [F (N, n)(q2
x); x # 4N]

defined cf. Eq. (1.1) converge in ( } ) N, n-distribution to Gaussian vectors
with covariance matrices C (N )

x, y and D (N )
x, y , given by the r.h.s. of Eqs. (3.6)

and (3.7) of ref. 1, respectively. In the next subsection we write down the
matrices C (N ), D(N ) in their diagonal (Fourier basis) representation.

2.2. The Operator R(N )
z and the Covariance Matrix C (N )

z

As a preliminary, we remind that the central object entering the
formulae and proofs of ref. 1 was the linear operator R(N )

z acting in the
space HN=L2([0, 1])�C4N (i.e., the space ``extended'' by adding a time
variable):

R (N )
z =;&1 \Xz+\i

- m
;

d
dt+

2

+
&1

(z>0) (2.12)

where i(d�dt) denotes the selfadjoint differential operator defined by periodic
boundary conditions on [0, 1]. The eigenvalues of i(d�dt) are *q=2?q, q # Z,
with corresponding eigenfunctions �q(t)=exp(&2?iqt). Taking into account
also Eqs. (2.7) and (2.9), one obtains that R (N )

z has the kernel

(R (N )
z )x, y (s, t)=|4N | &1 :

k # 4*N
q # Z

rz(k, q) exp[ik( y&x)+2?iq(t&s)] (2.13)

where

rz(k, q)=
1�;

z+|(k)+(2? - m q�;)2
(2.14)

It is important to note that the function rz : Bd_Z � R+ (where
Bd=[&?, ?)d is the Brillouin zone wrapped on a torus) is independent of
N (so, the only volume dependence in Eq. (2.13) comes from the summa-
tion range 4*N) and is a real-analytic function on Bd (i.e., a periodic real-
analytic function on Rd ). The (;, m)-dependence of rz is omitted for
notational convenience.
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Remarks. 1. The operator R (N )
z appeared in ref. 1 in a natural way

via the Feynmann�Kac formula involving an oscillator-bridge process:
R(N )

z is the covariance operator of the latter. It might be helpful to give the
quantum-mechanical meaning of R(N )

z : if 0�s�t�1,

(R (N )
z )x, y (s, t)=(qx(s); qy(t)) t

z, N=(R (N )
z )y, x (t, s)

where qx(t)=exp(&;tH� N(c)) qx exp(;tH� N(c)) with c=(z&a)�2, and
where (A; B) t

z, N=(AB) t

z, N&(A) t

z, N(B) t

z, N are the truncated expecta-
tions in the state ( } ) t

z, N .

2. By the definition of the Hartree�Fock state as the infinite product
of states ( } ) t

z, N for z=zN(;, m, h), one can readily calculate

(F� (N, n)(A) F� (N, n)(B)) HF
N =(A; B) t

z, N

In particular, one gets the covariance matrix of the Gaussian vector
[F� (N, n)(qx), x # 4n] as

C� (N )
x, y :=(F� (N, n)(qx) F� (N, n)(qy)) HF

N =(R (N )
z )x, y (0, 0) (z=zN(;, m, h))

(2.15)

In order to express the finite-volume covariance C (N ) we shall need

[(R (N )
z )x, y (s, t)]2=|4N | &1 :

k # 4*N
q # Z

. (N )
z (k, q) exp[ik( y&x)+2?iq(t&s)]

(2.16)

where . (N )
z is the convolution rz V rz over 4*N_Z:

. (N )
z (k, q)=|4N |&1 :

k$ # 4*N
q # Z

rz(k&k$, q&q$) rz(k$, q$) (2.17)

Then, the operator A defined in ref. 1, Eq. (2.28), which is essentially the
``extension'' to H4 of the q2 Hartree�Fock covariance, writes as:

(A (N )
z )x, y(s, t)

=2;b(q2
x(s); q2

y(t)) t

z, N

=
2;b
|4N |

:
k # 4*N
q # Z

__.(N )
z (k, q)+2 \h

z+
2

rz(k, q)& exp[ik( y&x)+2?iq(t&s)]&
(2.18)
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Finally, we define the matrix C (N )
z , given by Eq. (3.7) of ref. 1, by the

Fourier representation:

(C (N )
z )x, y=|4N | &1 :

k # 4*N

c (N )
z (k) exp ik( y&x) (2.19)

with

c (N )
z (k)= :

q # Z _rz(k, q)&
4;b(h�z)2 rz(k, q)2

1+2;b(. (N )
z (k, q)+(h�z)2 rz(k, q))&

= :
q # Z

1
;

1+2;b. (N )
z (k, q)

4b(h�z)2+(z+|(k)+(2? - m q�;)2)(1+2;b. (N )
z (k, q))

(2.20)

The covariance matrix C (N ) of the local displacement fluctuations
F (N )(qx) is obtained by putting z=zN(;, m, h) in C (N )

z .

Remarks. 1. We consider here the N � � limit of the expressions
above for fixed z>0. The general rule is that the Fourier sums converge
to integrals. For instance,

lim
N � �

(R (N )
z )x, y (s, t)=(Rz)x, y (s, t)

=(2?)&d |
Bd

dk :
q # Z

rz(k, q) exp[ik( y&x)+2?iq(t&s)]

(2.21)

and also

lim
N � �

. (N )
z (k, q)=.z(k, q)

= :
q$ # Z

(2?)&d |
Bd

dk$ rz(k&k$, q&q$) rz(k$, q$) (2.22)

Applying the dominated convergence theorem in Eqs. (2.18), (2.19), one
obtains that, uniformly on compacts of z>0, all matrix elements (A (N )

z )x, y

and (C (N )
z )x, y converge as N � � and the limit matrices Az and Cz define

bounded operators in l2(Zd ).

2. We conclude with a remark about the limit of R (N )
z in the case

z=0. If d�3, the following limits exist and are finite:

lim
zz0

(Rz)x, y (s, t)=: (R0)x, y (s, t)

838 Angelescu, Verbeure, and Zagrebnov



Of course, for finite N, limzz0 R (N )
z does not exist because of the k=0,

q=0 term; however, by projecting out the one-dimensional subspace of
constant functions corresponding to it, i.e., by excluding (k, q)=(0, 0) from
the sum in Eq. (2.2), one defines a kernel (Rz$

(N ))x, y for which the
convergence (2.9) holds with z=0 included:

lim
N � �

(Rz$
(N ))x, y (s, t)=(Rz)x, y (s, t), \z�0

Also, estimates on the rate of convergence in the last equation are
known:(8) the error is exponentially small if z>0 (in view of the analyticity
of the integrand) and it is O(N 2&d ) if z=0 (in view of the singularity
t |k|&2 at k=0 of rz(k, 0)).

2.3. The Phase Diagram

As already mentioned before, the thermodynamics of the model is
given exactly by the Hartree�Fock approximation, therefore the phase
diagram of the model is the same as the one obtained in ref. 6. We rederive
briefly the result for further reference.

The parameters of the model are ;>0, m>0 and h. The selfcon-
sistency equation (2.5$) which we write again for convenience:

z&a
2b

=\h
z+

2

+(R (N )
z )x, x (0, 0) (2.23)

has a unique solution zN(;, m, h)>0, because the r.h.s. is strictly decreas-
ing of z and diverges to +� for zz0. The different regions of the phase
diagram are determined by the N � � behaviour of zN(;, m, h). We hence-
forth suppose a<0 in order to have a nontrivial phase diagram.

If h{0, the limit equation

z&a
2b

=\h
z+

2

+(Rz)x, x (0, 0) (2.24)

has likewise a unique solution z�(;, m, h)>0, and

lim
N � �

zN(;, m, h)=z�(;, m, h) (2.25)

If h=0, the limit equation

z&a
2b

=(Rz)x, x (0, 0) (2.24$)
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has a positive solution z�(;, m, 0) if, and only if, (R0)x, x (0, 0)>&a�2b
and, in this case, again Eq. (2.25) holds. Moreover, z�(;, m, h) is a real-
analytic function in the whole (;, m, h)-region where it is strictly positive.

It is convenient to introduce a special notation for (Rz)x, x (0, 0),
putting into evidence its dependence on d, ; and m:

Id (;, m; z)=(2?)&d |
Bd

dk :
q # Z

rz(k, q)

=(2?)&d |
Bd

dk
coth(;�2 - m) - z+|(k)

2 - m - z+|(k)
(2.26)

This is a decreasing function of ; and

Id (�, m; z)=
1

2 - m
(2?)&d |

Bd
dk

1

- z+|(k)
, (z>0) (2.27)

Id (;, m; 0+) is finite for d�2. (Remark however that I2(;, m; z) behaves
for ; � �, z � 0 as I2(�, m; 0+)+const( |ln z|�;), due to the q=0 term
in the sum (2.26)).

For d�3, define md* by

&a
2b

=Id (�, md*; 0+), i.e., md*=\b
a

(2?)&d |
Bd

dk
1

- |(k)+
2

(2.28)

and ;c(m) for m>md* by

&a
2b

=Id (;c(m), m; 0+) (2.29)

With these definitions one can describe the phase diagram of the
model in the following form:

In the region

D1=[h{0] _ [h=0, m<md*, ;<;c(m)]

one has one normal phase, depending analytically on ;, m, h. For
(;, m, h) # D1 , limN � � zN(;, m, h)=z�(;, m, h)>0 and all quantities of
interest are obtained by applying the rule |4N |&1 �k # 4*N

� (2?)&d �Bd dk,
e.g., using the short-hand notation lim for the iterated limit limN � �

limn � � and z for z�(;, m, h), one gets in the limit for the displacement
average and Hartree�Fock covariance:
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lim(q:
x) N, n=

h
z

=: M(;, m, h) (2.30)

lim(q:
x ; q:

y) N, n=(Rz)x, y (0, 0)

=(2?)&d |
Bd

coth(;�2 - m) - z+|(k)

2 - m - z+|(k)
exp ik( y&x) dk

=: (C� z)x, y (2.31)

Remark. The existence of a critical mass md*>0 below which there
is no long-range order in the whole temperature range is a manifestation
of a general phenomenon, first evidentiated in ref. 9, namely that strong
quantum fluctuations prevent the appearance of the ordered phase. A sup-
pression of corresponding abnormal fluctuations was proven later in ref. 10.

In the region

D2=[h=0, m>md*, ;>;c(m)]

one has multiple phases. One can select an extremal state by approaching
a point (;, m) in D2 by points in D1 and looking at the weak limit of
the unique infinite-volume states associated to the latter, e.g., by letting
hz0 in Eqs. (2.30)�(2.31). One has limhz0 z�(;, m, h)=0 and the state
has spontaneous displacement:

M(;, m)=
&a
2b

&Id (;, m; 0+)>0 (2.32)

and the Hartree�Fock covariance operator

(C� 0)x, y=(2?)&d |
Bd

coth(; - |(k)�2 - m)

2 - m - |(k)
exp ik( y&x) dk (2.33)

has power law decay as |x& y| � �.

Remark. Another way of selecting the extremal state is to look at
limits of finite volume states ( } ) HF

N in a volume-dependent external field
hN such that limN(hN�zN(;, m, hN))=M(;, m), e.g., hNt |4N | &: with
0<:<1 (:<1 ensures that zN |4N | � �, therefore all sums in the second
term of the self-consistency Eq. (2.5$) converge to integrals, yielding
Id (;, m; 0+)), cf. refs. 6 and 7. While the state and the local fluctuation
field obtained by the two procedures are the same, the global fluctuations
turn out to be quite sensitive to the fine tuning of the external field, see
Section 4.
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Finally, the line

D3=[h=0, m>md*, ;=;c(m)]

is a line of critical points, with no spontaneous displacement M(;c(m), m)
=0, and Hartree�Fock covariance given by Eq. (2.33).

2.4. The Local-Displacement Fluctuation Field

In the regularity region D1 of the phase diagram, where limN zN=
z�>0 (the dependence on (;, m, h) # D1 is understood), one has from
Eq. (2.22) that

lim
N � �

. (N )
zN

(k, q)=.z�
(k, q) (2.34)

The convergence is uniform on Bd and the functions .z�
( } , q) are real-

analytic for all q # Z. One obtains therefore that

lim
N � �

(C (N )
zN

)x, y=(Cz�
)x, y=(2?)&d |

Bd
cz�

(k) exp ik( y&x) dk (2.35)

where cz : Bd � R (z>0) is the real analytic function

cz(k)= :
q # Z

1
;

1+2;b.z(k, q)

4b(h�z)2+(z+|(k)+(2? - m q�;)2)(1+2;b.z(k, q))
(2.36)

Hence, (Cz�
)x, y decays exponentially fast as |x& y| � � and therefore the

matrix Cz�
defines a bounded operator on l2(Z

d ). Summarizing, we have
the following

Lemma. (i) For (;, m, h) # D1 the finite-dimensional distributions
of the finite-volume displacement fluctuation vectors F (N )(qx), x # 4N

converge to the finite-dimensional distributions of a regular Gaussian field
F(qx), x # Zd, of covariance operator Cz�

. The same picture holds for the
Hartree�Fock fluctuations F� (N )(qx), which converge in finite distribution
to another regular Gaussian field F� (qx), x # Zd of covariance operator C� z�

defined by the matrix (2.31).

(ii) For (;, m) in the multiphase region D2 and on the critical line
D3 we define the fluctuation field by taking the limit in finite distributions
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as hz0 of the regular field corresponding to (;, m, h) # D1 . The limit is a
singular Gaussian field of covariance matrix

(C0)x, y=lim
zz0

(Cz)x, y=(2?)&d |
Bd

c0(k) exp ik( y&x) dk (2.37)

with

c0(k)= :
q # Z

1
;

1+2;b.0(k, q)

4bm~ (;, m)2+(|(k)+(2? - m q�;)2)(1+2;b.0(k, q))
(2.38)

where

.0(k, q)= :
q$ # Z

(2?)&d |
Rd

dk$ r0(k&k$, q&q$) r0(k$, q$) (2.39)

Likewise, the same limit of [F� (qx); x # Zd ] defines a singular Gaussian
field of covariance matrix C� 0 , Eq. (2.33).

In order to facilitate the comparison with the Hartree�Fock
covariance, we use in Eq. (2.33) the well-known identity

c~ 0(k) :=
coth(; - |(k)�2 - m)

2 - m - |(k)
= :

q # Z

1
;

1

|(k)+(2? - m q�;)2
(2.40)

3. CLUSTERING PROPERTIES OF THE
LOCAL FLUCTUATION FIELD

In this section we prove the theorem in the Introduction, i.e., we estab-
lish and compare the large distance decay properties of (C0)x, y defined in
Eqs. (2.37)�(2.38) and of the Hartree�Fock covariance (C� 0)x, y , Eq. (2.33).
These relations will be proved in the following weak (distribution) sense:

Definition. A function f : Zd � R is said to have the weak limit
L # R as x � � if, for every C� function 8: Rd � R with compact support
away from the origin

lim
* � �

*&d :
x # Zd

f (x) 8(x�*)=L |
Rd

8(x) dx=L(2?)d�2 8� (0) (3.1)

The meaning of this definition is that the measure defined by point
masses equal to f (x) placed at the point x�* # (1�*) Zd (i.e., the contracted
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cubic lattice of lattice constant 1�*) converges weakly to L dx outside the
origin. Clearly, usual convergence to the limit L implies weak convergence
to L, so, if the limit exists, it equals the weak limit. The converse is not true
(e.g., take f (x)=(&1)�d

i=1 xi for which the weak limit exists and equals 0
but the usual limit does not exist) because Eq. (3.1) implies an averaging
process over a large scale.

Lemma. The following large distance asymptotics hold weakly:

lim
|x& y| � �

|x& y|d&2 (C� 0)x, y

=
1
;

Kd , if (;, m) # D2 _ D3 (3.2)

lim
|x& y| � �

|x& y|2(d&2) (C0)x, y

=
1

2;M2 K 2
d , if (;, m) # D2 (3.3)

lim
|x& y| � �

|x& y|d&2 (C0)x, y

=
1
;

Kd , if (;, m) # D3 (3.4)

where Kd=1 (d�2&1)�4?d�2.

Remarks. 1. For (;, m) # D3 , i.e., where M(;, m)=0, (C0)x, y=
(C� 0)x, y , as seen by comparing Eqs. (2.38) and (2.40). Hence, Eq. (3.4)
coincides with Eq. (3.2).

2. The most significant result is Eq. (3.3), which proves the theorem
in the Introduction, i.e., shows that, whenever M(;, m)>0, (C0)x, y

behaves at large distances like (C� 0)2
x, y . For instance, if d=3, (C� 0)x, yt

(1�;) |x& y|&1, while (C0)x, yt(1�2;M2) |x& y| &2 (with an amplitude
diverging as the critical line is approached).

3. While �y # Zd (C� 0)x, y diverges for all d�3, one has �y # Zd (C0)x, y

convergent for d�5 and divergent only for d=3, 4. In particular, defining
the global fluctuations in the infinite-volume state as the limit in distribu-
tion as N � � of

FN, $=|4N |&(1+$)�2 :
x # 4N

F(qx), F� x, $� =|4N | &(1+$� )�2 :
x # 4N

F� (qx) (3.5)
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then, in order to get nontrivial limit random variables, one should take
$=$(d ), $� =$� (d ) as follows:

1�6, if d=3

$� (d )=
1
d

, \d�3, $(d )={0+, if d=4 (3.6)

0, if d�5

(where 0+ means modulo logarithmic corrections). This means that the
global fluctuations associated in an extremal infinite-volume state with
F(qx) become normal starting with d=4, where, in fact, the mean-field
behaviour is expected to set in.

4. The same relations (3.2)�(3.4) hold for the classical counterpart of
the model (or its infinite mass limit m � �). This follows from the fact that
the Fourier coefficients of a real analytic function on Bd have exponential
decay. As |(k), and hence (a+|(k))&1 for a>0, is real analytic and as the
series (2.38) and (2.40) are uniformly convergent, one concludes that only
the q=0 terms contribute to the power law asymptotics. In particular,
c~ 0(k) can be replaced by 1�;|(k) (which is its classical counterpart), and
hence Eq. (3.2) is nothing but the well known asymptotic behaviour of the
kernel of (&2)&1, where 2 is the lattice Laplacian. By the same argument
.0(k, q) equals, modulo a real analytic function on Bd, the q$=0 term in
its definition (2.39), i.e., its classical counterpart:

.0(k, q)t(2?)&d |
Bd

dk$
1

|(k&k$) |(k$)
=: .sing

0 (k, q) (3.7)

where t means equality of the singular parts. As it will become clear
during the proof, neither the latter replacements affect the power-law
decay.

Proof of Eq. (3.3). We take f (x)=|x|2(d&2) (C0)0, x in the definition
above and use the fact that the function |x|2(d&2) 8(x) is likewise C� with
compact support outside the origin, therefore its Fourier transform, which
equals (&2)d&2 8� (k), has all moments equal to 0. Therefore,

*&d :
x # Zd

|x|2(d&2) (C0)0, x 8(x�*)=*d&4 |
Rd

c0(k�*)(&2)d&2 8� (k) dk
(3.8)

will not charge if we modify c0 by subtracting an arbitrary polynomial
of k (the convergence at infinity is ensued by the fact that 8� # S(Rd ), i.e.,
it decays at �, with all its derivatives, faster than any inverse power of
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distance). This is the main technical advantage of the definition (3.1): we
are no longer bound to work with equivalence modulo real analytic periodic
functions.

Summarizing, in order to obtain Eq. (3.3), we have to show that

lim
* � �

*d&4 |
Rd

c0(k�*)(&2)d&2 8� (k) dk=
K 2

d

2;M 2 |
Rd

�d (k)(&2)d&2 8� (k) dk
(3.9)

where �d (k) is the fundamental solution of (&2)d&2 �d (k)=$:(11)

�d (k)={Ad |k| d&4

Bd |k| d&4 ln |k|
(d odd)
(d even)

(3.10)

Thereby, we can subtract at will polynomials from c0 , meaning that only
the singular part of c0 will contribute to the limit (3.9). We shall denote r

the equality modulo a polynomial.
Applying this machinery to Eq. (3.9) one has successively

*d&4c0(k�*)r
*d&4

;
1+2;b.0(k�*, 0)

4bM 2+|(k�*)(1+2;b.0(k�*, 0))

=
*d&4

4b;M 2 :
s&1

p=0

(&1) p \|(k�*)
4bM 2 +

p

(1+2;.0(k�*, 0)) p+1

+
(&1)s *d&4(|(k�*)�4bM 2)s (1+2;b.0(k�*, 0))s+1

;(4bM2+|(k�*)(1+2;b.0(k�*, 0)))

r
*d&4. sing

0 (k�*, 0)
2;M2

+
*d&4

4b;M 2 :
s&1

p=1

(&1) p \|(k�*)
4bM 2 +

p

(1+2;b.0(k�*, 0)) p+1

+
(&1)s *d&4(|(k�*)�4bM 2)s (1+2;b.0(k�*, 0))s+1

;(4bM2+|(k�*)(1+2;b.0(k�*, 0)))
(3.11)

At this stage it should be visible that the first term alone provides the
stated result: indeed, .sing

0 is the convolution 1�| V 1�|, so its Fourier
transform behaves like the square of the Fourier transform of 1�|. In fact,
.sing

0 has been analyzed in connection with the classical n-vector model in
ref. 5, where it is proved that there exist functions R*(k) such that

.sing
0 rR* and lim

* � �
*d&4R*(k�*)=(2?)d K 2

d�d (k) (3.12)
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We are thus left with showing that the other terms in Eq. (3.11)
converge to zero as * � �. We shall use that for k # Bd

C$ |k|2�|(k)�C |k|2, lim
* � �

*2|(k�*)=|k| 2 (3.13)

C�|k|, if d=3

0�.0(k, 0)�{C | |ln |k| |, if d=4 (3.14)

C if d�5

One can see from these bounds, by simple power counting and applying
the dominated convergence theorem, that the last term of Eq. (3.11) does
not contribute to the limit (3.9), if the following choice of s is done: s=1
for d=3, 4 and s=[d�2]&1 for d�5 (Indeed, this term is O(*&1) for
d=3, O( |k|2 ln2 *�*2 |ln |k| | ) for d=4, and O( |k|2s *d&4&2s) for d�5). We
have still to settle the middle terms p=1,..., s&1 for d>5. Using Eq. (3.12)
one sees that the singular part is given by terms of the form

*d&4|(k�*) p R*(k�*)n Pm(k�*)

where Pm is a homogeneous polynomial of degree m�0 and 1�n� p+1.
Therefore, using Eqs. (3.12), (3.13) and (3.14), one has that the contribu-
tion of this term is bounded by

*d&4&2p&m&n(d&4)(*2|(k�*)) p |*d&4R*(k�*)| n

which vanishes when * � �. K

4. GLOBAL DISPLACEMENT FLUCTUATIONS

We shall calculate here the critical exponents $ of the global displace-
ment fluctuations F (N )

$ (q), Eq. (1.7), in the multiphase region D2 , where
differences from the Hartree�Fock value $� may appear. When considering
the infinite-volume limit of F (N )

$ (q) and F� (N )
$� (q) with respect to the finite-

volume equilibrium distributions, one has to make sure, in order to obtain
a significant result (i.e., $<1�2), that the latter approach an extremal
infinite-volume state. We shall do this via the procedure described in the
remark of Section 2.3, i.e., by taking finite-volume states with an external
field hN , vanishing as N � �. Namely, we take

hN=|4N |&:, 0<:<1 (4.1)
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and look at F (N )
$ (q) and F� (N )

$� (q) constructed as in Eq. (1.7) in terms of
the Gaussian vectors F (N )

$ (qx) and F� (N )
$� (qx), x # 4N , of covariance matri-

ces C (N )=C (N )
zN (;, m, hN ) (Eq. (2.19), (2.20)) and C� (N )=R (N )

zN (;, m, hN )(0, 0)
(Eq. (2.15)), respectively. The condition of extremality of the limit state is
expressed as:

lim
N � �

hN

zN(;, m, hN)
=M(;, m) (4.2)

i.e., zNtM(;, m)&1 |4N | &:. Remembering Eq. (2.32), this implies that the
term j=0, k=0 of the self-consistency Eq. (2.5$) should go to 0, i.e., that
zN |4N | � �, which requires :<1.

As a result, F (N )
$ (q) and F� (N )

$� (q) are Gaussian random variables of
variances, respectively:

c (N )
zN

(0)=
1

; |4N |2$ :
q # Z

1+2;b.(N )
zN

(0, q)

4b(hN�zN)2+(zN+(2? - m q�;)2)(1+2;b.(N )
zN

(0, q))
(4.3)

c~ (N )
zN

(0)=
1

; |4n |2$�
:

q # Z

1

(zN+(2? - m q�;)2)
(4.4)

Thereby, $=$(:) and $� =$� (:) are to be chosen such that the limits of (4.3)
and (4.4), respectively, be different from 0 and �. It is obvious from
Eq. (4.2) that, for all d�3 and all (;, m) # D2 ,

$� (:)=:�2 (4.5)

which is exactly the result obtained in ref. 6.
In order to calculate $(:), we need the asymptotics of

. (N )
zN

(0, 0)=
1

|4N |
:
k, q

[zN+|(k)+(2? - m q�;)2]&2

t
1

|4N |
:
k

[zN+|(k)]&2 (4.6)

Let d=3. If :>2�3, taking into account that the sum in Eq. (4.6) is
over k=2? |4N | &1�3 }, } # Z3 and using the bound (3.13), one has:

zN+|(k)tM&1 |4N |&:+|(2? |4N |&1�3 })

�M&1 |4N |&:+C |4N | &2�3 }2
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hence

|4N |&1 :
k{0

[zN+|(k)]&2�|4N | 1�3 :
} # Z3"[0]

}&2

therefore the k=0 term |4N |&1 z&2
N tM2 |4N |2:&1 dominates the N � �

behavior. On the other hand, if :<2�3, |4N |&1 z&3�2
N � 0, and using the

convergence of the integral

J=|
R3

(1+k2)&1 dk

together with the limit in Eq. (3.13), one has

. (N )
zN

(0, 0)t |4N | &1 z&2
N :

k # 4*N

[1+z&1
N |(k)]&2

=z&1�2
N ( |4N |&1 z&3�2

N ) :
k # zN

&1�2 4*N

[1+z&1
N |(z1�2

N k)]&2
tz&1�2

N J

Returning to Eq. (4.3), and remarking that in all cases zN. (N )
zN

(0, 0)
� 0, one obtains

$(:)={:�4,
:&1�2,

:�2�3
:>2�3

(d=3) (4.7)

Let now d=4. Using again the bounds (3.13), one has

. (N )
zN

(0, 0)t |4N |&1 z&2
N + :

} # Z4"[0]
|}i | �N

( |4N |&:+1�2+C}2)&2

if :>1�2, the first term, being proportional to |4N | 2:&1, dominates the
second term proportional to ln |4N |, while, if :<1�2, the converse is true.
One obtains therefore

$(:)={0+,
:&1�2,

:�1�2
:>1�2

(d=4) (4.8)
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Finally, let d�5. Then Jd :=�Bd |(k)2 dk<�, therefore

lim
N � �

(.(N )
zN

(0, 0)&|4N |&1 z&2
N )=(2?)&d Jd

and one gets

$(:)={0,
:&1�2,

:�1�2
:>1�2

(d�5) (4.9)

We remark that the Hartree�Fock values $� (:) in Eq. (4.5) are strictly
larger than $(:) for all :{0, 1. The difference $� (:)&$(:)>0 expresses
quantitatively the fact that, even in the n � � limit, the n-component
vector model takes into account more correlations than the Hartree�Fock
model, yielding a better approximation of the finite-component model.
Remark also that lim:z0 $(:)=0, expressing the normality of the fluctua-
tions if the external field tends to zero slowly enough such that it induces
a quadratic deviation from the equilibrium free-energy. For :�1, $� (1)=
$(1)=1�2, characteristic for phase mixtures, indicating that the external
field is too weak to pick up an extremal state. Anyway, these results show
that the abnormal character of the fluctuations is sensitive to boundary
conditions, in particular to external fields.

5. REMARKS

The 1�n-expansion(1) allows to construct for the n-vector anharmonic
crystal an interacting field of local-displacement fluctuations [F (N )(qx)]x # 4N

in the limit n=�.
We have studied the clustering properties of this field in the thermo-

dynamic limit for different domains of the phase diagram and compared
them with the corresponding Hartree�Fock approximation. The latter
yields for F� (qx), x # Zd, the same results as for the exactly soluble spherical
model for a one-component anharmonic crystal.(6) Due to technical dif-
ficulties implied in the functional integral approach(1) we do not touch here
the question of the local-momentum fluctuation field [F (N )( px)]x # 4N

. On
the other hand, the field F� ( px), x # Zd, corresponding to the Hartree�Fock
approximation, which has the same global fluctuations F� $� $( p) as the one-
component spherical model of the anharmonic crystal, can be calculated
directly avoiding the functional integral approach. This calculations show
that F� $� (q) and F� $� $( p) yield, for T=0, m=md* and a properly chosen
($� , $� $), a representation of a CCR-algebra, see ref. 6. Remark that the func-
tional integration technique could also be used in the one-component
spherical model of the anharmonic crystal and raises the same technical
problems at calculating the momentum fluctuations.
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